Direct-Write Assembly of Microperiodic Silk Fibroin Scaffolds for Tissue Engineering Applications

نویسندگان

  • Sourabh Ghosh
  • Sara T. Parker
  • Xianyan Wang
  • David L. Kaplan
  • Jennifer A. Lewis
چکیده

Three–dimensional, microperiodic scaffolds of regenerated silk fibroin have been fabricated for tissue engineering by direct ink writing. The ink, which consisted of silk fibroin solution from the Bombyx mori silkworm, was deposited in a layer-by-layer fashion through a fine nozzle to produce a 3D array of silk fibers of diameter 5 mm. The extruded fibers crystallized when deposited into a methanol-rich reservoir, retaining a pore structure necessary for media transport. The rheological properties of the silk fibroin solutions were investigated and the crystallized silk fibers were characterized for structure and mechanical properties by infrared spectroscopy and nanoindentation, respectively. The scaffolds supported human bone marrow-derived mesenchymal stem cell (hMSC) adhesion, and growth. Cells cultured under chondrogenic conditions on these scaffolds supported enhanced chondrogenic differentiation based on increased glucosaminoglycan production compared to standard pellet culture. Our results suggest that 3D silk fibroin scaffolds may find potential application as tissue engineering constructs due to the precise control of their scaffold architecture and their biocompatibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures.

3D silk/HA microperiodic scaffolds for bone tissue engineering and angiogenesis are fabricated by direct-write assembly. This approach can be used to control filament and spacing size in the scaffold to allow investigation of the effect of scaffold architecture on osteogenesis and vessel-like structure formation from stem cells and endothelial cells.

متن کامل

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

In vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds

Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...

متن کامل

Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications.

AIM The development of novel silk/nano-sized calcium phosphate (silk/nano-CaP) scaffolds with highly dispersed CaP nanoparticles in the silk fibroin (SF) matrix for bone tissue engineering. MATERIALS & METHODS Nano-CaP was incorporated in a concentrated aqueous SF solution (16 wt.%) by using an in situ synthesis method. The silk/nano-CaP scaffolds were then prepared through a combination of s...

متن کامل

Stem cell-based tissue engineering with silk biomaterials.

Silks are naturally occurring polymers that have been used clinically as sutures for centuries. When naturally extruded from insects or worms, silk is composed of a filament core protein, termed fibroin, and a glue-like coating consisting of sericin proteins. In recent years, silk fibroin has been increasingly studied for new biomedical applications due to the biocompatibility, slow degradabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008